
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Tresor Application Crypto 07.-09.2017
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Kobeissi

Index
Introduction
Scope
Identified Vulnerabilities

1u1-22-001 Crypto: Release Signing Private Key Available in Public (Critical)
Miscellaneous Issues

1u1-22-002 Crypto: JceAesBlockCipher leaks info via AES/ECB default (Info)
Conclusions

Introduction
This report documents the findings of a security assessment of the Tresor applications
created by 1&1 Mail & Media GmbH, specifically focusing on the results pertaining to the
cryptographic implementations. Carried out by Cure53, this project yielded two security-
relevant discoveries in the realm of cryptographic security.

Notably, this cryptography assessment is a part of a previously agreed several rounds of
testing in the wider realm of 1&1 Mail & Media GmbH’s cooperation with Cure53.
Therefore, narrowing down the findings to the cryptography realm can help present a
clearer verdict on this pivotal arena. Importantly, the focus on cryptography was explicit
during the first phase of the assignment performed in July 2017. As far as
methodological approach of this project is concerned, a white-box strategy has been
selected. The initial round of testing looked at web applications besides being
particularly invested in assessing cryptographic libraries. Two members of the Cure53
were specifically tasked with inspecting the three cryptographic libraries created and
maintained by the Cryptomator team and used by the Tresor app entities. These were
checked for correctness of implementation, as well as studied for presence of other
security issues.

In the next sections, the report provides a case-by-case discussion for each of the two
issues. Comprehensive mitigation advice is concurrently supplied for each finding
whenever possible. The report closes with a conclusion about the general verdict about
the cryptographic libraries undergirding the Tresor app operations.

Cure53, Berlin · 11/27/17 1/4

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Cryptomator Crypto Libraries

◦ https://github.com/cryptomator/cryptolib

◦ https://github.com/cryptomator/cryptofs

◦ https://github.com/cryptomator/siv-mode

◦ https://github.com/cryptomator/cryptomator-objc-cryptor

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. 1u1-22-001) for the purpose of facilitating any
future follow-up correspondence.

1u1-22-001 Crypto: Release Signing Private Key Available in Public (Critical)
Note: The GPG key is used exclusively for the Maven repositories, is designed for
signing only and is protected by a 30-character generated password (alphabet size: 96
chars). It is iterated and salted (SHA1 with 20971520 iterations). An offline attack is also
very unattractive. Apart from that, this finding has no influence on the Tresor apps. This
was not known to Cure53 at the time of reporting.

The private release-signing PGP key, namely 34C80F11.gpg, is publicly disclosed inside
the project’s siv-mode, cryptolib and cryptofs GitHub repositories. While the key is still
protected with a seemingly strong passphrase, there are no circumstances which could
warrant a full release private key to be leaked in public. An adversary willing to invest
time could potentially bypass the passphrase protections imposed on the private key and
compromise the release pipeline.

This issue can be verified by navigating to the Github URLs listed next.

URLs:
https://github.com/cryptomator/cryptolib/blob/develop/34C80F11.gpg
https://github.com/cryptomator/cryptofs/blob/develop/34C80F11.gpg
https://github.com/cryptomator/siv-mode/blob/master/34C80F11.gpg

Output:
-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v1

Cure53, Berlin · 11/27/17 2/4

https://cure53.de/
https://github.com/cryptomator/siv-mode/blob/master/34C80F11.gpg
https://github.com/cryptomator/cryptofs/blob/develop/34C80F11.gpg
https://github.com/cryptomator/cryptolib/blob/develop/34C80F11.gpg
https://github.com/cryptomator/cryptomator-objc-cryptor
https://github.com/cryptomator/siv-mode
https://github.com/cryptomator/cryptofs
https://github.com/cryptomator/cryptolib
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

lQc+BFdtLX[...]

It is recommended to have the private key replaced, rotated, and removed from public
repositories.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

1u1-22-002 Crypto: JceAesBlockCipher leaks info via AES/ECB default (Info)
It was found that the JceAesBlockCipher implementation defaults to using AES in ECB
mode, which is known to be semantically insecure1. This may result in unintended data
leakage when the library is used without the default ECB setting being changed. The
code snippet below can be reviewed as a confirmation of this problem.

File:
siv-mode-master/src/main/java/org/cryptomator/siv/JceAesBlockCipher.java

Affected Code:
28 class JceAesBlockCipher implements BlockCipher {
29
30 private static final String ALG_NAME = "AES";
31 private static final String KEY_DESIGNATION = "AES";
32 private static final String JCE_CIPHER_NAME = "AES/ECB/NoPadding";
[...]
38 public JceAesBlockCipher() {
39 try {
40 this.cipher = Cipher.getInstance(JCE_CIPHER_NAME); //
defaults to SunJCE but allows to configure different providers
41 } catch (NoSuchAlgorithmException | NoSuchPaddingException e)
{
42 throw new IllegalStateException("Every implementation
of the Java platform is required to support AES/ECB/NoPadding.");
43 }
44 }

It appears that the only reason for the AES/ECB mode being currently included in the
aforementioned adapter is to satisfy the Java compliance requirements for cryptographic
modules. Furthermore, it seems that the siv-mode library is presently structured in such

1 https://crypto.stackexchange.com/questions/20941/why-shouldnt-i-use-ecb-encryption

Cure53, Berlin · 11/27/17 3/4

https://cure53.de/
https://crypto.stackexchange.com/questions/20941/why-shouldnt-i-use-ecb-encryption
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

a way that referencing the SIV mode construction from within the library itself (instead of
ECB mode) is not straightforward. Nevertheless, it is recommended to either:

• Refactor the library so that SIV mode can be called by default immediately from
within the adapter specified in JceAesBlockCipher.java, instead of AES/ECB.

• Change the default behavior to a semantically secure alternative such as
AES/CTR. A fallback to AES/ECB can remain as an option for when more secure
alternatives are not available.

Conclusions
The results of this assessment against the cryptographic libraries employed by the
Tresor apps by 1&1 Mail & Media GmbH are favorable for the examined items. The
tested libraries generally held up to Cure53’s scrutiny and stood fairly strong against a
range of review approaches.

The cryptographic implementation exhibited a quite exceptional level of robustness,
even though one finding was ultimately deemed as “Critical”. Still, the assessment’s
findings are very few and far between, in addition demonstrating that no issues could be
tied to threatening the Tresor apps’ security and integrity in the long-run. While certain
issues and imperfections were noticed and reported, the cryptographic strategies
employed by the Tresor apps remain sound and adequate. In other words, the security in
this realm is sufficient for the stated use-case, being further boosted by exposing a very
small attack surface.

To conclude, the scoped relevant cryptographic libraries of the Tresor apps make a very
good impression. The main recommendation is to continue on this path of security
dedication, with additional piece of advice concerning documentation of development
best practices.

Cure53 would like to thank Michael Ingelbach and Daniel Kefer of 1&1 Mail & Media
GmbH for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · 11/27/17 4/4

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Tresor Application Crypto 07.-09.2017
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	1u1-22-001 Crypto: Release Signing Private Key Available in Public (Critical)

	Miscellaneous Issues
	1u1-22-002 Crypto: JceAesBlockCipher leaks info via AES/ECB default (Info)

	Conclusions

